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Motivated by the reported enhanced singlet exciton yield in light-emitting polymers, we investigate spin-
orbit coupling between Coulombically bound interchain excitations. We show theoretically that because of the
close similarity of the singlet and triplet interchain wave functions, spin-orbit coupling between these states is
negligible. Using density matrix renormalization group calculations on model systems, we confirm these
theoretical predictions: spin-orbit coupling between interchain states is typically 103–104 times smaller than
between corresponding intramolecular states, being typically ca. 1�10−7 eV for disordered polymers. We
discuss the implication of these results for the possibly enhanced singlet exciton yield in light-emitting
polymers.
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I. INTRODUCTION

One of the factors that determines the internal electrolu-
minescent quantum efficiency of polymer light-emitting de-
vices is the yield of singlet excitons formed by the recombi-
nation of the injected electrons and holes. Singlet exciton
yields in light-emitting polymers exceeding the spin-
independent recombination value of 25% has been reported
by a large number of groups,1–7 although its value remains
highly controversial.8

Various theoretical models have been proposed to explain
the possible enhanced singlet yield. All of these models pro-
pose a long-lived intermediate triplet state that either under-
goes intersystem crossing �ISC� to a singlet state or decays to
a lower-lying triplet state. Refs. 9–11 propose an intramo-
lecular intermediate triplet state that interconverts to other
intramolecular states. References 12–15, on the other hand,
propose an intermolecular intermediate triplet state that ei-
ther intersystem crosses to a short-lived intermolecular sin-
glet �which rapidly interconverts to an intramolecular state�
or interconverts directly to an intramolecular triplet state.
Barford15 also proposed selection rules that apply to well-
ordered systems, which inhibit certain intermolecular inter-
conversion processes, implying that the large intramolecular
singlet-triplet exchange gap strongly inhibits the triplet inter-
conversion process.

Having established the theoretical possibility of long-
lived intermediate triplets, the remaining issue is whether
there are any ISC mechanisms with rates comparable to or
faster than the triplet interconversion rate. In this paper we
consider spin-orbit coupling as a possible mechanism for
ISC between Coulombically bound interchain singlet and
triplet states. We show that for such interchain excitations
spin-orbit coupling is negligible and cannot compete with
intermolecular interconversion rates. This conclusion is in
agreement with the experimental observations of Reufer et
al.16

There are two well-known reasons why ISC rates are
small for conjugated polymers in general,17,18 and a third
reason why they are especially small between quasidegener-
ate interchain excitations in particular. The two general rea-

sons are that for �-electron systems, the effective nuclear
charge is small and the spin-orbit coupling matrix elements
vanish between � orbitals in planar systems. The third rea-
son that is particular to interchain excitations is due to the
property that the spin-orbit matrix elements between a pair of
states are proportional to the differences in their spatial wave
functions. For the quasidegenerate interchain excitations of
relevance in this work, these differences are small, and con-
sequently the spin-orbit matrix elements are also very small.
�Calculated spin-orbit coupling matrix elements in conju-
gated polymers between intramolecular excitons19 and single
polarons20 have recently been reported in the literature.�

In the next section these points are explained in more
detail. It will be shown that the physical characteristics of
interchain excitations are crucial to our discussion, so Sec.
III is devoted to a description of these states. We use density
matrix renormalization calculations on model systems to
confirm our theoretical considerations. We make concluding
comments in Sec. IV

II. PROOFS THAT SPIN-ORBIT COUPLING IS
NEGLIGIBLE FOR REAL SYSTEMS AND VANISHING

FOR IDEAL �-ELECTRON SYSTEMS

A. Spin-orbit coupling of � electrons

The one-electron spin-orbit operator is

ĤSO = �
i

N

ĤSO
�i� �1�

where

ĤSO
�i� = �2�

n

N
Zn

Rni
3 L̂i

�n� . Ŝi, �2�

the sum i is over electrons, the sum n is over nuclei, and Rni
is the distance between the nth nucleus and the ith electron.

L̂i
�n� is the angular momentum operator for the ith electron

associated with the nth nucleus, � is the fine structure con-
stant �=7.297¯ �10−3�, and Zn is the effective nuclear
charge.
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In general we require atomic spin-orbital matrix elements
of the form

����n��,����
n�

N Zn�

Rn�
3 L̂�n�� . Ŝ���n�,�� , �3�

where ���n� ,�� is an atomic spin-orbital of type � and spin �
localized on atom n. Let us suppose that n and n� are the
same or neighboring carbon atoms. Let us further suppose
that we may restrict the sum over atoms in Eq. �3� to the
carbon atom containing orbital ���n�� and the neighboring

carbon atom. Then, using the Hermitian properties of ĤSO
�i�

the matrix elements take the form

����n��,���
Zn

Rn
3 L̂�n� . Ŝ���n�,�� , �4�

where the operator L̂�n� . Ŝ acts on the orbital localized on
atom n.

Now, in the spin-orbital basis ��2s ,↑� , �2s ,↓� , �2px ,↑� ,
�2px ,↓� , �2py ,↑� , �2py ,↓� , �2pz ,↑� , �2pz ,↓�� the matrix of the

operator L̂ · Ŝ is

L̂ · Ŝ =
i

2	
0 0 0 0

0 0
− 1 0

0 + 1

0 − i

+ i 0

0
+ 1 0

0 − 1
0

0 − 1

− 1 0

0
0 + i

− i 0

0 + 1

+ 1 0
0


 , �5�

where 0= � 0 0
0 0 �.

From Eq. �5� we observe that

L̂ · Ŝ�2pz,�� =
i

2
�i�2px,�̄�sgn��� − �2py,�̄�� . �6�

Thus, the operator L̂ · Ŝ changes both the orbital and spin
angular momentum projections of a � electron. For
�-electron systems this implies that:

�1� The spin-orbit coupling connects singlet excitons with
Sz= �1 triplet excitons;11

�2� The matrix elements of L̂ · Ŝ are nonzero only if the
local axis of quantization rotates between neighboring atoms.
In particular, for a spiral along the bond between two carbon
atoms �defined by the x axis� the matrix elements are propor-
tional to sin �, where � is the twist angle.11,20

The spin-orbit coupling matrix element between neigh-
boring � orbitals is therefore21

A = B sin � , �7�

where

B = − i
Zn�2

2
�pz

�n+1��Rn
−3�pz

�n�� �8�

�in atomic units�. Taking the effective charge Zn=4 for �
electrons �i.e., assuming full screening from the 1s elec-

trons�, and using Slater orbitals with a bond length of 1.4 Å
we calculate �B�=3.94�10−4 eV.

B. Symmetry restrictions on spin-orbit coupling

We now consider the symmetry restrictions on spin-orbit
coupling in �-electron systems implied by the results de-
scribed in Sec. II A. The pure-imaginary Hermitian proper-
ties of the angular momentum operator imply that

����n���L̂���n���−���n��L̂����n���, and so the relevant one-
electron spin-orbit operator that connects singlet states with
Sz=1 triplet states is now expressed in second quantized for-
malism as

ĤSO = �
n

N−1

A�ĉn↑
† ĉn+1↓ − ĉn+1↑

† ĉn↓� , �9�

where ĉn�
† �ĉn�� creates �destroys� a � electron on site n and

A is defined by Eqs. �7� and �8�.
We note in general that ĤSO does not transform as the

totally symmetric spatial irreducible representation, and thus
for systems with a definite point group symmetry it will not
connect states with the same spatial symmetry.17

In the next section we consider model systems with the
following spatial symmetries �as illustrated in Fig. 3�:

�1� Calculation 1: Perfectly co-planar molecules with no
longitudinal displacement, belonging to the D2h point group.
Defining the molecular axis as the x axis and the axis normal
to the repeat units as the z axis, in this point group HSO
transforms as B3u, i.e., as x.

�2� Calculation 2: Co-planar molecules with a relative
longitudinal displacement, belonging to the C2h point group.
In this point group HSO transforms as Bu.

Although idealized, the alternating long and short bonds
of these structures mean that they capture the key physics of
conjugated polymers. Finally, we note that HSO is odd under
the particle-hole transformation ĉi�

† → �−1�iĉi�̄. Since, where
particle-hole symmetry is applicable, the lowest interchain
singlet and triplet excitations have opposite particle-hole
symmetry, it follows that there is no particle-hole symmetry
restriction on ISC.

C. Spin-orbit operator couples states
with different spatial wave functions

The pure-imaginary Hermitian properties of the angular
momentum operator imply that its diagonal matrix elements
vanish within a space of real spatial wave functions. Thus, if
the total singlet and triplet states are expressed as

��S� = �	S��
S� �10�

and

��T� = �	T��
T� , �11�

respectively, where �	� and �
� are the spatial and spin wave

functions, then using the result that �	�L̂�	�=0 when �	� is
real it follows that

��S�L̂ · Ŝ��T� = �	S�L̂��	� · �
S�Ŝ�
T� , �12�

where
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��	� = �	S� − �	T� . �13�

Now, as shown in more detail in Sec. III A, neglecting
direct exchange processes, to zeroth order in the intermo-
lecular interactions, the singlet and triplet interchain excita-
tions are equivalent �and degenerate�. This degeneracy is
lifted by intermolecular hybridization �or hopping� terms that
exchange the spins. Denoting the energy scale for intermo-
lecular hybridization by tinter, to first order in tinter, ��	� is
proportional to tinter /�E, where �E is the energy difference
between the interchain states and relevant intrachain states,
and in general tinter��E. Thus, ��	� and hence spin-orbit
coupling vanishes as tinter��E.

III. COULOMBICALLY BOUND
INTERCHAIN EXCITATIONS

As described in the previous section, the properties of the
interchain excited state wave functions determine the
strength of the ISC rates. In this section we investigate such
states. We use the term interchain excitations to describe ex-
citations that are predominately composed of Coulombically
bound interchain particle-hole excitations. �Here, we gener-
ally make no distinction between “polaron-pairs,” “exci-
plexes,” or “charge-transfer excitons,” as such distinctions
are not rigorous for general coupled systems.22�

Since the Coulomb operator commutes with the number
operator, Coulomb interactions preserve the charge on each
chain. The Coulomb operator, therefore, cannot mix different
components of interchain excitations, nor can it mix inter-
chain excitations with intrachain excitations. We therefore
conclude that in the absence of direct exchange, only inter-
chain hopping processes can lift the singlet-triplet degen-
eracy. This is done by two ways: �1� mixing interchain exci-
tations with doubly excited intrachain and ground state
configurations, leading to kinetic exchange interactions; and
�2� direct mixing between interchain and intrachain excita-
tions. We now discuss each of these processes.

A. Kinetic exchange interactions

Kinetic exchange26 raises the energy of the interchain sin-
glet relative to the interchain triplet, provided that the repeat
units are not perfectly co-facial. To see this consider the de-
generate interchain Sz=0 basis states for a pair of dimers
�illustrated in Fig. 1�,

�A� = â1−↑
† â2+↑�GS� �14�

and

�B� = â1−↓
† â2+↓�GS� �15�

with energy Ei=�E+3�Ũ+ Ṽ�, where ân��
† creates an elec-

tron with spin � in the bonding �+� or antibonding �−� mo-
lecular orbital on dimer n.

The one-electron interchain Hamiltonian, Ĥinter
1e , connects

these states to the virtual doubly occupied state,

�1� = â1−↑
† â1−↓

† â2+↑â2+↓�GS� �16�

with energy E1=2�E+6Ũ and to the ground state, �2�
��GS�, with energy E2=2Ũ+4Ṽ. The parameters with tildes
are molecular orbital parameters related to the atomic orbital

parameters via Ũ= �V0+V1� /2 and Ṽ= �2V2+V3+V4� /4,
where Vj is the Ohno potential for neighboring sites,
as shown in Fig. 2. The highest occupied molecular orbital–
lowest unoccupied molecular orbital �HOMO-LUMO� en-
ergy gap is �E=2t1.

Thus, the effective exchange interactions are

J1 = −
t̃2

�E1 − Ei�
�17�

and

J2 = −
t̃2

�E2 − Ei�
, �18�

where t̃= �t3− t4� /2. The total kinetic exchange interaction is
therefore

A B

1 2

� �1
3E E U V� � � � �� � � �� �2

E E U V� � � � � �� �

�

�
E�

t�

t� t��

t��

1 2

FIG. 1. The two virtual processes that mix the Sz=0 eigenstates
�A� and �B� to form definite spin eigenstates. Process 2, connecting
�A� and �B� to �2�, dominates giving an effective positive exchange
interaction that raises the energy of the singlet relative to the triplet.

1
V

2
V

2
V
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V

FIG. 2. Illustrating the Coulomb and hopping interactions be-
tween the two dimers.
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J = J1 + J2 =
2t̃2�Ũ − Ṽ�

��E + 3�Ũ − Ṽ���E + �Ũ − Ṽ�
. �19�

Notice that J0 because process “2” �illustrated in Fig. 1�
dominates.

The Hamiltonian matrix for kinetic exchange in the basis
��A� , �B�� is

� J − J

− J J
� , �20�

with eigenstates

�S = 1; Sz = 0� =
1
�2

��A� + �B�� �21�

at ET=0, and

�S = 0� =
1
�2

��A� − �B�� �22�

at ES=2J. The kinetic exchange gap is therefore 2J and van-
ishes for co-facial dimers, as then t3= t4 and t̃=0.

This result may be understood physically as follows. First,
the triplet state is unperturbed by kinetic exchange, as may
be seen by considering the Sz=1 component, whose parallel
spins are forbidden by the Pauli principle to occupy the same
orbital. Second, the singlet state is “repelled” by the higher
and lower states, �1� and �2�, respectively. However, since
��E2�� ��E1�, the repulsion from the ground state dominates,
and the energy of the interchain state is raised.28

The second-order perturbation in the singlet energy im-
plies a first-order perturbation in its wave function, and thus
to leading order the difference between the singlet and triplet
interchain wave functions is proportional to t̃ /�E. As de-
scribed in Sec. II C, this implies that the spin-orbit coupling
matrix elements between these states is also proportional to
t̃ /�E, and becomes vanishing for weak intermolecular inter-
actions. �In addition to this indirect kinetic exchange mecha-
nism, there is also of course direct exchange arising from the
Coulomb repulsion of the wave function overlap. This also
lowers the energy of the triplet relative to the singlet.�

B. Intrachain and interchain exciton mixing

As well as processes 1 and 2 illustrated in Fig. 1 that
exchange electron spins, the intermolecular hopping mixes

interchain and intrachain excitations. To second order in per-
turbation theory this leads to a correction in energy of t̃2 /�E,
where �E is the difference in energies between the interchain
and intrachain excitations. The sign in the shift in energies
arising from this mixing is determined by the energetic prox-
imity of nearby states.

C. Model calculations

As the discussions in the previous sections illustrates, the
differences between the singlet and triplet interchain excited
state wave functions arise from high-order �i.e., two-particle�
processes. Such processes require a rigorous approach to
electron correlation �and lie outside the scope of CI-singles
calculations�. In this section we apply the density matrix
renormalization group �DMRG� method27 to solve the
Pariser-Parr-Pople model for models systems that are param-
etrized to describe phenyl-based systems.

The model calculations for linear polyenes are calcula-
tions 1 and 2 described in Sec. II B. The geometry of the
coupled chains is illustrated in Fig. 3, while the relevant
parameter sets are shown in Table I. In the next section we
briefly review the Pariser-Parr-Pople model, before describ-
ing the results. Relevant technical details of the DMRG
method and convergence tests are described in the Appendix.

1. Pariser-Parr-Pople model

The Pariser-Parr-Pople �or extended Hubbard� model is a
�-electron model of conjugated polymers, defined by

TABLE I. Parameters defined in Fig. 3 used in the model cal-
culations. The hybridization integrals are determined by assuming
that they are proportional to the wave function overlap, evaluated
using Slater orbitals, and normalized with respect to the C−C
hybridization integral �taken to be 2.5 eV�. In both cases td

=−3.0 eV, ts=−2.0 eV, U=8 eV, �=2, and the interchain dis-
tance, D=4 Å. L is the relative longitudinal displacement of the
chains.

Parameters
Calculation 1:D2

symmetry
Calculation 2:C2

symmetry

L �Å� 0 0.7

t2 �eV� 0.058 0.055

t3 �eV� 0 0.039

t4 �eV� 0 0.020

TABLE II. Low-energy excitations for 6 sites. td=−3.0 eV, ts

=−2.0 eV, U=8 eV, and �r=2.

State
Energy

�eV� Quantum number, n Quantum number, j

1 3Bu
+ 3.176 1 1

1 3Ag
+ 4.197 1 2

2 3Bu
+ 4.958 1 3

1 1Bu
− 5.501 1 1

2 1Ag
+ 5.834 2 1

1 3Ag
− 7.703 2 1

D

L
x

d

tstd

FIG. 3. The spatial geometries and parameters used in the model
calculations 1 and 2. In both cases td=−3.0 eV, ts=−2.0 eV, d
=2.8 Å, and D=4.0 Å.
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Ĥ = − �
ij�

tij�ĉi�
† ĉj� + ĉj�

† ĉi�� , �23�

+ U�
i

�N̂i↑ − 1/2��N̂i↓ − 1/2� +
1

2�
i�j

Vij�N̂i − 1��N̂j − 1� ,

�24�

where ĉi�
† creates a � electron on site i, N̂i�= ĉi�

† ĉi�, and N̂i

= N̂i↑+ N̂i↓.
We use the Ohno parameterization for the Coulomb inter-

action, defined by

Vij = U/�1 + �U�rrij/14.397�2, �25�

where rij is the interatomic distance �in Å�, U is the on-site
Coulomb interaction �in eV�, and �r is the relative permittiv-
ity. This interaction is an interpolation between an on-site
Coulomb repulsion, U, and a Coulomb potential, e2 /4���0rij
as rij→�. We use the screened parameter set derived by
Chandross and Mazumdar29 to account for solvation effects.
These parameters are U=8 eV and �r=2.

2. Single chain results

The lowest energy excitations for a single linear chain of
six sites is shown in Table II for model parameters that ap-
proximately parametrize poly�para-phenylene�. The states
are labeled by the principle and pseudomomentum exciton
quantum numbers, n and j, respectively.30–32 We note that for

six sites there are three triplet excitons below the lowest
singlet exciton, and that the n=2 singlet exciton lies lower in
energy than the n=2 triplet exciton.

3. Coupled chain results

We first consider coupled chains with high spatial sym-
metry �calculation 1�. Table III shows the exact low-energy
singlet spectrum for two linear aligned chains of six sites
each. There are two sets of predominately intrachain excitons
lying below the first set of predominately interchain excita-
tions. The former are formed from bonding and antibonding
combinations of the n=1 and n=2 intrachain singlet exci-
tons. The lowest interchain excitation is predominately a po-
laron pair.23 The higher-lying interchain excitation �state 6�
is, however, mixed with the lowest-lying singlet exciton, and
is thus an exciplex.

Table IV shows the corresponding triplet spectrum. As
expected from the single-chain spectrum, there are three
pairs of predominately intrachain excitons �all arising from
the n=1 family� that lie below the interchain excitations. The
lowest triplet interchain excitation is essentially degenerate
with its singlet counterpart.33 For this high symmetry system
the matrix elements of the spin-orbit coupling operator be-
tween the interchain excitations vanish by symmetry, so we
no longer consider it.

Tables V and VI show the low-energy spectrum for
coupled chains with lower spatial symmetry, in particular
linear chains displaced by 0.7 Å, so that the overall system

TABLE III. Low-energy singlet excitations for 2�6 sites for Calculation 1 �defined by Fig. 3 and Table
I�.

State
Energy

�eV� ��xy� ��yz� Particle-hole Quantum number, n Type

1 5.378 −1 −1 −1 1 Intra

2 5.597 +1 −1 −1 1 Intra

3 5.827 −1 +1 +1 2 Intra

4 5.830 +1 +1 +1 2 Intra

5 6.056 +1 −1 +1 1 Inter

6 6.074 −1 −1 −1 1 Inter

TABLE IV. Low-energy triplet excitations for 2�6 sites for Calculation 1 �defined by Fig. 3 and Table
I�.

State
Energy

�eV� ��xy� ��yz� Particle-hole Quantum number, n Type

1 3.172 −1 −1 +1 1 Intra

2 3.176 +1 −1 +1 1 Intra

3 4.193 −1 +1 +1 1 Intra

4 4.197 +1 +1 +1 1 Intra

5 4.956 −1 −1 +1 1 Intra

6 4.959 +1 −1 +1 1 Intra

7 6.056 +1 −1 −1 1 Inter

8 6.059 −1 −1 +1 1 Inter

SPIN-ORBIT INTERACTIONS BETWEEN INTERCHAIN… PHYSICAL REVIEW B 81, 035206 �2010�

035206-5



has C2 symmetry �calculation 2�. We also include next-
nearest-neighbor interchain hopping, so that the particle-hole
symmetry is lifted. Now the lowest interchain excitations
mix with the lower intrachain excitons. They also experience
kinetic exchange, as described in Sec. III A, because t3� t4,
and thus the triplet interchain excitation lies slightly lower in
energy than the singlet.

4. Spin-orbit coupling matrix elements

We now consider matrix elements of the dimensionless
spin-orbit coupling operator

ÔSO = �
n

N−1

�ĉn↑
† ĉn+1↓ − ĉn+1↑

† ĉn↓� �26�

between the triplet and singlet interchain excitations with
opposite inversion symmetry, i.e.,

�ÔSO� � �S = 1, Sz = 1; C2 = − 1�ÔSO�S = 0; C2 = + 1� .

�27�

These matrix elements, with the corresponding energy gap,
�ETS�E�S=1, Sz=1; C2=−1�−E�S=0, C2=+1�, are cal-
culated by the DMRG method and shown in Table VII. Since
the spectrum of intrachain excitations below the lowest in-
terchain excitation becomes denser as the chain length in-
creases, results to our desired accuracy �namely ca. 0.001 eV
in the excitation energies and ca. 20% in the matrix ele-
ments� are only possible for chains of up to 12 sites. How-

ever, since the effective conjugation length in light-emitting
polymers is ca. 8–10 repeat units,34 these results are expected
to be relevant for realistic systems. �Full DMRG conver-
gence tables are shown in the Appendix.�

We note that the triplet lies energetically below the sin-
glet, with the energy gap between them being less than kBT,
in agreement with previous work.24 �Note, the energy differ-
ence between the triplets and singlets with the same spatial
symmetry is even smaller, being typically 2 meV.� We also
see that the spin-orbit coupling matrix elements between
these interchain states are very small, being essentially
103–104 times smaller than the corresponding matrix ele-
ments between intramolecular states. The numerical value of

the spin-orbit coupling is �ĤSO�=A�ÔSO�, where A=B sin �

and �B�=3.94�10−4 eV. Thus, ��ĤSO�� ca. 1�10−7 eV, tak-
ing �=20°.

IV. DISCUSSION AND CONCLUSIONS

Using theoretical arguments we have shown that spin-
orbit coupling between Coulombically bound interchain ex-
citations in conjugated polymers is vanishing for ideal sys-
tems and negligible for realistic systems. As well as the usual
reasons for why spin-orbit coupling is small in �-conjugated
polymers, we have shown that it is particularly small be-
tween low-lying interchain excitations, because these states
have wave functions that differ by an amount proportional to
the interchain one-electron hopping integral, tinter, which van-
ishes as the intermolecular interactions vanish.

Using DMRG calculations on model systems we confirm
these theoretical predictions: spin-orbit coupling between in-
terchain states is typically 103–104 times smaller than be-
tween corresponding intrachains states, being ca. 1
�10−7 eV for the parameter sets considered in this paper.
Since the spin-orbit coupling is proportional to tinter, reducing
the interchain separation will increase the coupling, but it
will always be negligible for realistic values of tinter. �Note,
however, we predict that spin-orbit coupling vanishes for
perfectly co-facial polymers.�

We have also performed ab initio calculations of the ex-
citation energies and spin-orbit coupling for coupled biphe-
nyl molecules using the CIS�D�35 method including two-
electron spin-orbit coupling. These results, which confirm
our model calculations, will be presented shortly.36

TABLE V. Low-energy singlet excitations for 2�6 sites for
Calculation 2 �defined by Fig. 3 and Table I�.

State
Energy

�eV� C2 Quantum number, n Type

1 5.383 +1 1 Intra

2 5.592 −1 1 Intra

3 5.827 −1 2 Intra

4 5.829 +1 2 Intra

5 6.063 −1 1 Inter

6 6.076 +1 1 Inter

TABLE VI. Low-energy triplet excitations for 2�6 sites for
Calculation 2 �defined by Fig. 3 and Table I�.

State
Energy

�eV� C2 Quantum number, n Type

1 3.173 +1 1 Intra

2 3.176 −1 1 Intra

3 4.194 −1 1 Intra

4 4.196 +1 1 Intra

5 4.956 +1 1 Intra

6 4.958 −1 1 Intra

7 6.061 −1 1 Inter

8 6.064 +1 1 Inter

TABLE VII. Triplet-singlet energy splitting and spin-orbit cou-
pling matrix elements for Calculation 2 �defined by Fig. 3 and Table
I�.

Number of sites per chain
�ETS

�eV� �ÔSO��10−4

4 −0.013 5.0

6 −0.016 1.9

8 −0.017 5.2

10 −0.017 7.7

12 −0.017 10.9
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We have shown that spin-orbit coupling vanishes for
highly symmetric arrangements of polymers. For these sys-
tems it is possible for electron-phonon coupling to induce a
symmetry-allowed transition. However, the matrix elements
will still be vanishingly small for the same reasons that they
are for lower-symmetry systems, namely the near degeneracy
of the interchain excitations. The addition of heteroatoms
may also weakly change our conclusions, but again so long
as the polymers are equivalent, the near degeneracy of the
interchain excitations will ensure small spin-orbit coupling
matrix elements.

The work described here is motivated by a desire to find a
mechanism for the possible enhanced singlet exciton yield in
light-emitting polymers. As described in Sec. I, such a
mechanism �if it exists� relies on an intersystem crossing rate
being comparable to or faster than the interconversion rate
from the interchain to intrachain triplet states. According to
Ref. 15 these interconversion rates are predominately deter-
mined by the overlap of the vibrational wave functions of the
initial and final states. Assuming that interconversion only
occurs between the lowest interchain state and the lowest
pseudomomentum component of the intramolecular state
�which is only true provided that selection rules appropriate
to well-ordered chains hold�, then the one-electron intercon-
version matrix element is

�Ĥinter� � tinter� exp�− S�S�

�!
�1/2

. �28�

Typically for light-emitting polymers �T�8, �S�4, and

S�0.5. Using tinter=0.05 eV gives �Ĥinter�T�1�10−5 eV

and �Ĥinter�S�2�10−3 eV for triplet and singlet intercon-
version, respectively. Bearing in mind that these results are
underestimates of the interconversion matrix elements, we
see that an ISC rate arising from spin-orbit coupling cannot
compete with interconversion rates. This conclusion is in
agreement with the experimental observations of Reufer et
al.,16,37 who reported ISC rates of �105 s−1 between Cou-
lombically bound interchain excitations. This observation
contrasts with reported ISC rates between exciplexes across a
heterojunction of 2�106 s−1 by Ford et al.38 However,
since exciplexes at a heterojunction are linear combinations
of polaron pairs and intramolecular excitons, it is unclear
how relevant this value is for interchain excitations at a regu-
lar junction.

The question then remains: What, if any, ISC mechanism
competes with interconversion processes? Since the inter-
chain excitations are weakly bound, scattering of these pairs
with free charge carriers will cause ISC, preferentially from
triplet to singlets because the triplets are longer lived. How-
ever, modeling this process is complicated by the particular
device characteristics which determine local charge imbal-
ances. Without such modeling it is unclear whether this ISC
mechanism is able to compete with interconversion
processes.39
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APPENDIX: DETAILS OF THE DMRG CALCULATIONS

The interchain or intrachain character of the excited states
is determined by measuring the particle-hole excitation
weights,31,40 defined via the singlet or triplet particle-hole
excitation operator,

1
3Ômn =

1
�2

�âm−↑
† ân+↑ � âm−↓

† ân+↓� �A1�

where âm��
† creates an electron with spin � in the bonding

�+� or antibonding �−� molecular orbital on repeat unit m.
The intrachain weight is

Wintra = �
m�1,n�1

��mn�2 �A2�

while the intrachain weight is

TABLE VIII. Convergence results for the DMRG calculations for various convergence parameters for Calculation 2 �defined by Fig. 3
and Table I�. Number of sites per chain, N; superblock Hilbert space size, SBHSS; ground state energy, EGS, in eV; excitation energy of the
singlet interchain excitation �S=0; C2=+1�, �ESS, in eV.

N

Run 1 Run 2 Run 3

SBHSS EGS �ESS SBHSS EGS �ESS SBHSS EGS �ESS

4 Exact −34.8012 7.059 Exact −34.8012 7.059 Exact −34.8012 7.059

6 Exact −52.7670 6.076 Exact −52.7670 6.076 Exact −52.7670 6.076

8 0.99�106 −70.7339 5.549 2.93�106 −70.7386 5.544 6.55�106 −70.7389 5.543

10 0.69�106 −88.6969 5.244 3.05�106 −88.7108 5.228 5.72�106 −88.7117 5.226

12 0.92�106 −106.6564 5.078 2.76�106 −106.6814 5.030 5.67�106 −106.6840 5.024

TABLE IX. Same as Table VIII, for Run 4.

N

Run 4

SBHSS EGS �ESS

4 Exact −34.8012 7.059

6 Exact −52.7670 6.076

8 12.43�106 −70.7389 5.543

10 10.83�106 −88.7120 5.225

12 10.80�106 −106.6853 5.023
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Winter = �
m�1,n�2

��mn�2, �A3�

where

�mn = ���Ômn�GS� , �A4�

and �GS� and ��� are the ground state and excited state,
respectively.

In our DMRG algorithm we employ the sparse symmetry
operator techniques for computing symmetry adapted eigen-
states described in Ref. 41. This approach allows us to target
eigenstates with specific spin-flip, particle-hole, and reflec-
tion �short and long axis in the case of coupled chains� sym-
metries by expressing the DMRG superblock symmetry op-
erators as tensor products of operators from the individual
blocks that make up the superblock �in the case of the
present model, a system block, a reflected system block, and
two added repeat units in the middle�. The block symmetry
operators can be kept sparse throughout the course of the
DMRG algorithm by exploiting the fact that the operators
obey a type of commutativity with the reduced density ma-
trix, whose eigenstates are used to form new block bases
when the system blocks are augmented by adding one of the
middle blocks. The generalized commutativity relation im-
plies that the augmented block symmetry operators are
sparse in this new rotated basis—a result of the fact that the
density matrix eigenstates must be eigenstates of the symme-
try operators or are connected to precisely one other density
matrix eigenstate in a different z-spin-charge �Q , Sz� sub-

space. For example, in the case of the spin-flip operator P̂, in
subspaces where Sz=0, the density matrix eigenstates are
eigenstates of the spin-flip operator, viz

P̂�Q,0,n��a�� = p�Q,0,n��Q,0,n��a��,

where �Q ,Sz ,n��a�� denotes the nth density matrix eigenstate,
or rotated augmented block basis state, in the �Q ,Sz�
z-spin-charge sector, and p�Q ,0 ,n�� �+1,−1� is the eigen-
value of the spin-flip operator. For the other subspaces
�where Sz�0�, we can fix the arbitrary phase factors in the
density matrix eigenstates in the Sz�0 sectors so that the
spin-flip operator satisfies the general sparsity relation

P̂�Q,Sz,n��a�� = p�Q,Sz,n��Q,− Sz,n��a��, �A5�

with p�Q ,Sz ,n��1 for all Sz�0.
The derivation of this result, presented in the appendix of

Ref. 41, assumed that all superblock target states making up
the Gibbs state projection operator that is partially traced to
form the reduced �augmented block� density matrix have to-
tal Ss

z=0 �these can be singlets or Ss
z=0 branches of triplet

excitations�. It was mentioned that it is possible to generalize
the Gibbs states to include target states with nonzero super-
block z spin. Indeed, this is required for the calculations in
this paper, as we need to compute matrix elements between
superblock eigenstates with Ss

z=0 and those with Ss
z=1 �the

branches of the low-lying triplet excitations with Ss
z=1�. This

can be achieved by ensuring that for each Ss
z=1 target state

we compute and add into the Gibbs state, we compute the
corresponding Ss

z=−1 state and add it in also to the Gibbs
state, with the same weight factor. In fact, once we have
computed Ss

z=1 states, we do not need to compute the corre-
sponding Ss

z=−1 by superblock Hamiltonian diagonalization.
Rather, we can simply apply the superblock spin-flip opera-
tor to the Ss

z=1 state and this will generate the corresponding
Ss

z=−1 state. A further efficiency can be obtained by simply
forming the asymmetric Gibbs state containing just the Ss

z

=0 and Ss
z=1 states required for our spin-orbit calculations,

forming the corresponding reduced density matrix �which
will not satisfy the generalized commutativity relation�, and
then symmetrizing it. That is, if �̂�Sz� denotes the reduced
density matrix in the subspace with z spin Sz, then we replace

��Ŝz� with

�̂��Sz� �
1

2
��̂�Sz� + P̂�̂�− Sz�P̂�

This new symmetrized density matrix is then guaranteed to
satisfy the generalized commutativity relation

�̂��Sz� = P̂�̂��− Sz�P̂

required to establish the sparsity condition �A5� of the ro-
tated augmented block spin-flip operator. Indeed this ap-
proach is equivalent to adding in the Ss

z=−1 states to the
Gibbs state �and directly deriving a symmetric density

TABLE X. Convergence results for the DMRG calculations for various convergence parameters for
Calculation 2 �defined by Fig. 3 and Table I�. Number of sites per chain, N; energy gap between the triplet
and singlet interchain excitations, �ETS=E�S=1, Sz=1; C2=−1�−E�S=0; C2=+1� in eV; spin-orbit cou-

pling matrix element �ÔSO�= �S=1, Sz=1; C2=−1�ÔSO�S=0; C2=+1�, with ÔSO defined in Eq. �27�. The
results for four and six sites per chain are exact.

N

Run 1 Run 2 Run 3

�ETS �ÔSO��10−4 �ETS �ÔSO��10−4 �ETS �ÔSO��10−4

4 −0.013 5.0 −0.013 5.0 −0.013 5.0

6 −0.016 1.9 −0.016 1.9 −0.016 1.9

8 −0.018 4.4 −0.016 4.9 −0.017 5.2

10 −0.016 6.5 −0.016 6.3 −0.017 7.7
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matrix� as long as the weights of the Ss
z=0 states are divided

by 2 relative to Ss
z=1 states in the asymmetric Gibbs state.

Tables VIII–X show the convergence of the excitation
energies and spin-orbit coupling matrix elements. For the
convergence parameters used in the results described in Sec.

III C, namely Run 3, we see that the excitation energies have
converged to ca. 0.001 eV, which is considerably smaller
than the singlet-triplet interchain exchange splitting. Spin-
orbit coupling matrix elements have converged to better than
20%.
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